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Introduction
Noisy Intermediate Scale Quantum (NISQ) devices have empirical evidence of quantum
computational supremacy as scale-up of a search space rather than speed-up performance
[3]. In the context of wireless communications, we study combinatorial optimization problems
that have a huge search space.

One problem with a huge search space is the Multi-User Multiple Input Multiple Output
(MU-MIMO) downlink scheduling problem of 5G and future 6G networks. There exist clas-
sical algorithms [2] that are very fast in solving the MU-MIMO scheduling problem, but with
strong heuristics and parallel computing. A quantum algorithm for the problem may allow to
study the full search space and provide insight for even better classical algorithms.

The MU-MIMO radio communication has also other combinatorial problems that may ben-
efit from NISQ computing, including maximum likelihood based MIMO (ML-MIMO) signal
detection. The lattice based combinatorial problem that relates to ML-MIMO is known as the
shortest vector problem (SVP). While this is a quite general problem it impacts many areas
of research in particular post-quantum cryptography (PQC) and the security of modern
encryption systems.

The MU-MIMO downlink scheduling problem

MU-MIMO downlink scheduling problem.

A base station must share its limited
communication capacity fairly between a
large number of user equipments (UEs).
Communication capacity consist of radio
frequency and time.

System model
The system model includes

• variables like the set of K of all UEs that
the base station serves,

• parameters like the set B of resource
blocks, and the set M of possible mod-
ulation and coding schemes. A re-
source block b ∈ B is the smallest el-
ement in scheduling.

• constraints, and
• binary decision variables.

In order to understand how big the solu-
tion space is, we need to consider the fol-
lowing numbers:

|K | The number of UEs
|B | The number of resource blocks |B | ≤ 273
|M | The number of modulation and coding schemes |M | ≤ 28
NT Max. number of transmitted data streams from the BS NT = 8
NR The number of antennas at an UE NR < NT

Important parameters/variables for the MU-MIMO scheduling problem.

Industrial use case
Our special focus is in an industrial application, with moving robots and their communication
in a restricted factory area. The main simplification comes from the small number of UEs,
moreover, |K | is a more predictable variable. Assuming a digital twin we can also have more
time for the computing.

The size of the search space
The number of scheduling choices can be computed with the formula [2]
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General case: With |M | = 28, NR = 2, |K | = 100, |B | = 273, and NT = 8, the search space of

the general problem is approximately the order of 10189, see [2].
Industrial use case: With |M | = 28, NR = 4, |K | = 10, |B | = 273, and NT = 8, the search

space of the general problem is approximately the order of 8.6 · 1025.
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Empirical complexity study with our brute force algorithm.

Our approach

1. MU-MIMO
General case

4. QUBO

3. Brute force
(classical)

2. MU-MIMO
Industrial case

6. Quantum annealing
D-Wave

7. QAOA

5. Greedy algorithm
(classical)

8. QWOA
Quantum walk

Our overall approach for the MU-MIMO schedul-
ing problem.

Our approach to solve the MU-MIMO
scheduling problem has started with the
following steps:

1. We started with the existing MU-MIMO
downlink scheduling problem formula-
tion from [2].

2. We have specified a simpler schedul-
ing problem in industrial use cases.

3. We have written a classical brute force
algorithm for solving small instances of
the problem. This algorithm is impor-
tant for verification and benchmarking
purposes.

4. We have formulated the schedul-
ing problem in a Quadratic Uncon-
strained Binary Optimization (QUBO) form, both in general case and in our industrial
use case. The constraints of the original problem are formulated as penalties for the
QUBO.

5. A greedy algorithm for QUBOs has been developed and tested (around 30K binary vari-
ables).

Our next steps
Our plan is to study the MU-MIMO scheduling problem in several different ways including
the following:

6. Quantum annealing with D-Wave. We already have some experience in using D-Wave [4].
In addition to the scheduling problem, we also test the QUBO formulation of SVP [1] on
D-Wave with a focus on determining the security levels of lattice-based PQC algorithms.

7. Quantum Approximate Optimization Algorithm (QAOA). To begin we will estimate how
many qubits we should have in a gate based quantum computer. We will also use quan-
tum computing (Helmi) and quantum simulation (Kvasi) facilities through CSC.

8. Quantum Walk assisted QAOA (QWOA). To be done in collaboration with quantum walk
specialist(s).

9. We will test our classical greedy algorithm for the QUBO of the MU-MIMO scheduling
problem (see item 5. above). This approach is interesting itself and it gives us further
possibilities for benchmarking and comparisons against quantum computing as well as
finding boundaries for quantum advantage.

Our study is funded by Business Finland, see https://www.cohqca.fi/ for further informa-
tion. Companies in the project steering group are Nokia Bell Labs, Unitary Zero Space and
Cumucore.

Summary

• We are focusing on MU-MIMO downlink scheduling problem, which has
small input, small output, and an enormous search space.

• We are interested both in general case scheduling problem and in the in-
dustrial use case problem. The latter is assumed to be significantly easier
due to smaller number of UEs, predictability of robots’ movements and
communication, and the relaxed time bound for the computation due to
digital twin.

• After the QUBO formulation of the MU-MIMO scheduling problem we have
several ways to proceed with purely quantum, or quantum inspired classi-
cal algorithms.

• Similarly with the SVP QUBO formulation we will test the feasibility of solv-
ing SVP by adjusting parameters.
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